Saturday, July 24, 2010

The Ringer


Simply speaking this is a device that alerts you to an
incoming call. It may be a bell, light, or warbling tone. The
telephone company sends a ringing signal which is an AC waveform.
Although the common frequency used in the United States is 20 HZ,
it can be any frequency between 15 and 68 Hz. Most of the world
uses frequencies between 20 and 40 Hz. The voltage at the
subscribers end depends upon loop length and number of ringers
attached to the line; it could be between 40 and 150 Volts. Note
that ringing voltage can be hazardous; when you're working on a
phone line, be sure at least one telephone on the line is off the
hook (in use); if any are not, take high voltage precautions.
The telephone company may or may not remove the 48 VDC during
ringing; as far as you're concerned, this is not important.
Don't take chances.
The ringing cadence - the timing of ringing to pause -
varies from company to company. In the United States the cadence
is normally 2 seconds of ringing to 4 seconds of pause. An
unanswered phone in the United States will keep ringing until the
caller hangs up. But in some countries, the ringing will "time
out" if the call is not answered.
The most common ringing device is the gong ringer, a
solenoid coil with a clapper that strikes either a single or
double bell. A gong ringer is the loudest signaling device that
is solely phone-line powered.
Modern telephones tend to use warbling ringers, which are
usually ICs powered by the rectified ringing signal. The audio
transducer is either a piezoceramic disk or a small loudspeaker
via a transformer.
Ringers are isolated from the DC of the phone line by a
capacitor. Gong ringers in the United States use a 0.47 uF
8
capacitor. Warbling ringers in the United States generally use a
1.0 uF capacitor. Telephone companies in other parts of the
world use capacitors between 0.2 and 2.0 uF. The paper
capacitors of the past have been replaced almost exclusively with
capacitors made of Mylar film. Their voltage rating is always
250 Volts.
The capacitor and ringer coil, or Zeners in a warbling
ringer, constitute a resonant circuit. When your phone is hung
up ("on hook") the ringer is across the line; if you have turned
off the ringer you have merely silenced the transducer, not
removed the circuit from the line.
When the telephone company uses the ringer to test the line,
it sends a low-voltage, low frequency signal down the line
(usually 2 Volts at 10 Hz) to test for continuity. The company
keeps records of the expected signals on your line. This is how
it can tell you have added equipment to your line. If your
telephone has had its ringer disconnected, the telephone company
cannot detect its presence on the line.
Because there is only a certain amount of current available
to drive ringers, if you keep adding ringers to your phone line
you will reach a point at which either all ringers will cease to
ring, some will cease to ring, or some ringers will ring weakly.
In the United States the phone company will guarantee to ring
five normal ringers. A normal ringer is defined as a standard
gong ringer as supplied in a phone company standard desk
telephone. Value given to this ringer is Ringer Equivalence
Number (REN) 1. If you look at the FCC registration label of
your telephone, modem, or other device to be connected to the
phone line, you'll see the REN number. It can be as high as 3.2,
which means that device consumes the equivalent power of 3.2
standard ringers, or 0.0, which means it consumes no current when
subjected to a ringing signal. If you have problems with
ringing, total up your RENs; if the total is greater than 5,
disconnect ringers until your REN is at 5 or below.
Other countries have various ways of expressing REN, and
some systems will handle no more than three of their standard
ringers. But whatever the system, if you add extra equipment and
the phones stop ringing, or the phone answering machine won't
pick up calls, the solution is disconnect ringers until the
problem is resolved. Warbling ringers tend to draw less current
than gong ringers, so changing from gong ringers to warbling
ringers may help you spread the sound better.
Frequency response is the second criterion by which a ringer
is described. In the United States most gong ringers are
electromechanically resonant. They are usually resonant at 20
and 30 Hz (+&- 3 Hz). The FCC refers to this as A so a normal
gong ringer is described as REN 1.0A. The other common frequency
response is known as type B. Type B ringers will respond to
signals between 15.3 and 68.0 Hz. Warbling ringers are all type
B and some United States gong ringers are type B. Outside the
United States, gong ringers appear to be non-frequency selective,
9
or type B.
Because a ringer is supposed to respond to AC waveforms, it
will tend to respond to transients (such as switching transients)
when the phone is hung up, or when the rotary dial is used on an
extension phone. This is called "bell tap" in the United States;
in other countries, it's often called "bell tinkle." While
European and Asian phones tend to bell tap, or tinkle, United
States ringers that bell tap are considered defective. The bell
tap is designed out of gong ringers and fine tuned with bias
springs. Warbling ringers for use in the United States are
designed not to respond to short transients; this is usually
accomplished by rectifying the AC and filtering it before it
powers the IC, then not switching on the output stage unless the
voltage lasts long enough to charge a second capacitor.

The Dial


There are two types of dials in use around the world. The
most common one is called pulse, loop disconnect, or rotary; the
oldest form of dialing, it's been with us since the 1920's. The
other dialing method, more modern and much loved by Radio
Amateurs is called Touch-tone, Dual Tone Multi-Frequency (DTMF)
or Multi-Frequency (MF) in Europe. In the U.S. MF means single
tones used for system control.
Pulse dialing is traditionally accomplished with a rotary
dial, which is a speed governed wheel with a cam that opens and
closes a switch in series with your phone and the line. It works
by actually disconnecting or "hanging up" the telephone at
specific intervals. The United States standard is one disconnect
per digit, so if you dial a "1," your telephone is
"disconnected" once. Dial a seven and you'll be "disconnected"
seven times; dial a zero, and you'll "hang up " ten times. Some
countries invert the system so "1" causes ten "disconnects" and
0, one disconnect. Some add a digit so that dialing a 5 would
cause six disconnects and 0, eleven disconnects. There are even
some systems in which dialing 0 results in one disconnect, and
all other digits are plus one, making a 5 cause six disconnects
and 9, ten disconnects.
Although most exchanges are quite happy with rates of 6 to
15 Pulses Per Second (PPS), the phone company accepted standard
is 8 to 10 PPS. Some modern digital exchanges, free of the
mechanical inertia problems of older systems, will accept a PPS
rate as high as 20.
Besides the PPS rate, the dialing pulses have a make/break
ratio, usually described as a percentage, but sometimes as a
straight ratio. The North American standard is 60/40 percent;
most of Europe accepts a standard of 63/37 percent. This is the
pulse measured at the telephone, not at the exchange, where it's
somewhat different, having traveled through the phone line with
its distributed resistance, capacitance, and inductance. In
practice, the make/break ratio does not seem to affect the
performance of the dial when attached to a normal loop. Bear in
mind that each pulse is a switch connect and disconnect across a
complex impedance, so the switching transient often reaches 300
Volts. Try not to have your fingers across the line when
dialing.
Most pulse dialing phones produced today use a CMOS IC and a
keyboard. Instead of pushing your finger round in circles, then
removing your finger and waiting for the dial to return before
dialing the next digit, you punch the button as fast as you want.
The IC stores the number and pulses it out at the correct rate
with the correct make/break ratio and the switching is done with
a high-voltage switching transistor. Because the IC has already
stored the dialed number in order to pulse it out at the correct
rate, it's a simple matter for telephone designers to keep the
memory "alive" and allow the telephone to store, recall, and
6
redial the Last Number Dialed (LND). This feature enables you to
redial by picking up the handset and pushing just one button.
Because pulse dialing entails rapid connection and disconnection
of the phone line, you can "dial" a telephone that has lost its
dial, by hitting the hook-switch rapidly. It requires some
practice to do this with consistent success, but it can be done.
A more sophisticated approach is to place a Morse key in series
with the line, wire it as normally closed and send strings of
dots corresponding to the digits you wish to dial.
Touch tone, the most modern form of dialing, is fast and
less prone to error than pulse dialing. Compared to pulse, its
major advantage is that its audio band signals can travel down
phone lines further than pulse, which can travel only as far as
your local exchange. Touch-tone can therefore send signals
around the world via the telephone lines, and can be used to
control phone answering machines and computers. Pulse dialing is
to touch-tone as FSK or AFSK RTTY is to Switched Carrier RTTY,
where mark and space are sent by the presence or absence of DC or
unmodulated RF carrier. Most Radio Amateurs are familiar with
DTMF for controlling repeaters and for accessing remote and auto
phone patches.
Bell Labs developed DTMF in order to have a dialing system
that could travel across microwave links and work rapidly with
computer controlled exchanges. Each transmitted digit consists
of two separate audio tones that are mixed together (see fig.3).
The four vertical columns on the keypad are known as the high
group and the four horizontal rows as the low group; the digit 8
is composed of 1336 Hz and 852 Hz. The level of each tone is
within 3 dB of the other, (the telephone company calls this
"Twist"). A complete touch-tone pad has 16 digits, as opposed to
ten on a pulse dial. Besides the numerals 0 to 9, a DTMF "dial"
has *, #, A, B, C, and D. Although the letters are not normally
found on consumer telephones, the IC in the phone is capable of
generating them.
The * sign is usually called "star" or "asterisk." The #
sign, often referred to as the "pound sign." is actually called
an octothorpe. Although many phone users have never used these
digits - they are not, after all, ordinarily used in dialing
phone numbers - they are used for control purposes, phone
answering machines, bringing up remote bases, electronic banking,
and repeater control. The one use of the octothorpe that may be
familiar occurs in dialing international calls from phones in the
United States. After dialing the complete number, dialing the
octothorpe lets the exchange know you've finished dialing. It
can now begin routing your call; without the octothorpe, it would
wait and "time out" before switching your call.
When DTMF dials first came out they had complicated cams and
switches for selecting the digits and used a transistor
oscillator with an LC tuning network to generate the tones.
Modern dials use a matrix switch and a CMOS IC that synthesizes
the tones from a 3.57MHz (TV color burst) crystal. This
7
oscillator runs only during dialing, so it doesn't normally
produce QRM.
Standard DTMF dials will produce a tone as long as a key is
depressed. No matter how long you press, the tone will be
decoded as the appropriate digit. The shortest duration in which
a digit can be sent and decoded is about 100 milliseconds (ms).
It's pretty difficult to dial by hand at such a speed, but
automatic dialers can do it. A twelve-digit long distance number
can be dialed by an automatic dialer in a little more than a
second - about as long as it takes a pulse dial to send a single
0 digit.
The output level of DTMF tones from your telephone should be
between 0 and -12 dBm. In telephones, 0 dB is 1 miliwatt over
600 Ohms. So 0 dB is 0.775 Volts. Because your telephone is
considered a 600 Ohm load, placing a voltmeter across the line
will enable you to measure the level of your tones.

The Speech Network


The speech network - also known as the "hybrid" or the "two
wire/four wire network" - takes the incoming signal and feeds it
to the earpiece and takes the microphone output and feeds it down
the line. The standard network used all over the world is an LC
device with a carbon microphone; some newer phones use discrete
transistors or ICs.
4
One of the advantages of an LC network is that it has no
semiconductors, is not voltage sensitive, and will work
continuously as the voltage across the line is reduced. Many
transistorized phones stop working as the voltage approaches 3 to
4 Volts.
When a telephone is taken off the hook, the line voltage
drops from 48 Volts to between 9 and 3 Volts, depending on the
length of the loop. If another telephone in parallel is taken
off the hook, the current consumption of the line will remain the
same and the voltage across the terminals of both telephones will
drop. Bell Telephone specifications state that three telephones
should work in parallel on a 20 mA loop; transistorized phones
tend not to pass this test, although some manufacturers use ICs
that will pass. Although some European telephone companies claim
that phones working in parallel is "technically impossible," and
discourage attempts to make them work that way, some of their
telephones will work in parallel.
While low levels of audio may be difficult to hear, overly
loud audio can be painful. Consequently, a well designed
telephone will automatically adjust its transmit and receive
levels to allow for the attenuation - or lack of it - caused by
the length of the loop. This adjustment is called "loop
compensation." In the United States, telephone manufacturers
achieve this compensation with silicon carbide varistors that
consume any excess current from a short loop (see fig. 2).
Although some telephones using ICs have built-in loop
compensation, many do not; the latter have been designed to
provide adequate volume on the average loop, which means that
they provide low volume on long loops, and are too loud on short
loops. Various countries have different specifications for
transmit and receive levels; some European countries require a
higher transmit level than is standard in the United States so a
domestically-manufactured telephone may suffer from low transmit
level if used on European lines without modification.
Because a telephone is a duplex device, both transmitting
and receiving on the same pair of wires, the speech network must
ensure that not too much of the caller's voice is fed back into
his or her receiver. This function, called "sidetone," is
achieved by phasing the signal so that some cancellation occurs
in the speech network before the signal is fed to the receiver.
Callers faced with no sidetone at all will consider the phone
"dead." Too little sidetone will convince callers that they're
not being heard and cause them to shout, "I can hear you. Can
you hear ME?" Too much sidetone causes callers to lower their
voices and not be heard well at the other end of the line.
A telephone on a short loop with no loop compensation will
appear to have too much sidetone, and callers will lower their
voices. In this case, the percentage of sidetone is the same,
but as the overall level is higher the sidetone level will also
be higher.

well a phone line is operating

We can find out how well a phone line is operating by using
Ohm's law and an ammeter. The DC resistance of any device
attached to the phone line is often quoted in telephone company
specifications as 200 Ohms; this will vary in practice from
between 150 to 1,000 Ohms. You can measure the DC resistance of
your phone with an Ohmmeter. Note this is DC resistance, not
impedance.
Using these figures you can estimate the distance between
your telephone and the telephone exchange. In the United States,
the telephone company guarantees you no lower current than 20 mA
- or what is known to your phone company as a "long loop." A
"short loop" will draw 50 to 70 mA, and an average loop, about 35
mA. Some countries will consider their maximum loop as low as 12
mA. In practice, United States telephones are usually capable of
working at currents as low as 14 mA. Some exchanges will
consider your phone in use and feed dial tone down the line with
currents as low as 8 mA, even though the telephone may not be
able to operate.
Although the telephone company has supplied plenty of nice
clean DC direct to your home, don't assume you have a free
battery for your own circuits. The telephone company wants the
DC resistance of your line to be about 10 megOhms when there's no
apparatus in use ("on hook," in telephone company jargon); you
can draw no more than 5 microamperes while the phone is in that
state. When the phone is in use, or "off hook," you can draw
current, but you will need that current to power your phone, any
current you might draw for other purposes would tend to lower the
signal level.
The phone line has an impedance composed of distributed
resistance, capacitance, and inductance. The impedance will vary
according to the length of the loop, the type of insulation of
the wire, and whether the wire is aerial cable, buried cable, or
bare parallel wires strung on telephone poles. For calculation
and specification purposes, the impedance is normally assumed to
be 600 to 900 Ohms. If the instrument attached to the phone line
should be of the wrong impedance, you would get a mismatch, or
what telephone company personnel refer to as "return loss."
(Radio Amateurs will recognize return loss as SWR.) A mismatch
on telephone lines results in echo and whistling, which the phone
company calls "singing" and owners of very cheap telephones may
have come to expect. A mismatched device can, by the way, be
matched to the phone line by placing resistors in parallel or
series with the line to bring the impedance of the device to
within the desired limits. This will cause some signal loss, of
course, but will make the device usable.
The phone line
A telephone is usually connected to the telephone exchange
by about three miles (4.83 km) of a twisted pair of No.22 (AWG)
or 0.5 mm copper wires, known by your phone company as "the
loop". Although copper is a good conductor, it does have
resistance. The resistance of No.22 AWG wire is 16.46 Ohms per
thousand feet at 77 degrees F (25 degrees C). In the United
States, wire resistance is measured in Ohms per thousand feet;
telephone companies describe loop length in kilofeet (thousands
of feet). In other parts of the world, wire resistance is
usually expressed as Ohms per kilometer.
Because telephone apparatus is generally considered to be
current driven, all phone measurements refer to current
consumption, not voltage. The length of the wire connecting the
subscriber to the telephone exchange affects the total amount of
current that can be drawn by anything attached at the
subscriber's end of the line.
In the United States, the voltage applied to the line to
drive the telephone is 48 VDC; some countries use 50 VDC. Note
that telephones are peculiar in that the signal line is also the
power supply line. The voltage is supplied by lead acid cells,
thus assuring a hum-free supply and complete independence from
the electric company, which may be especially useful during power
outages.
At the telephone exchange the DC voltage and audio signal
are separated by directing the audio signal through 2 uF
capacitors and blocking the audio from the power supply with a 5-
2
Henry choke in each line. Usually these two chokes are the coil
windings of a relay that switches your phone line at the
exchange; in the United States, this relay is known as the "A"
relay (see fig.1). The resistance of each of these chokes is 200
Ohms.
UNDERSTANDING TELEPHONES
by
Julian Macassey, N6ARE
First Published
in
Ham Radio Magazine
September 1985
Everybody has one, but what makes it work?
Although telephones and telephone company practices may vary
dramatically from one locality to another, the basic principles
underlying the way they work remain unchanged.
Every telephone consists of three separate subassemblies,
each capable of independent operation. These assemblies are the
speech network, the dialing mechanism, and the ringer or bell.
Together, these parts - as well as any additional devices such as
modems, dialers, and answering machines - are attached to the
phone line.

Monday, July 5, 2010

There’s a New Game In Town
The Egg Drawing Is Cracked
Have you ever thought about the Egg Drawing? Month after
month we draw an egg with someone’s name who is not present to
win, or someone who seemingly is unknown to anyone in the club, or
even an SK. Then someone lugs home the eggs and their crate,
usually grumbling about carrying this load.
Starting at the April General Meeting we’ll try something NEW.
Wear your name badge, and you’ll receive one ticket for a prize
drawing to be given that night. Not from the ARALB? Wear your
name badge from any club. Forget your badge, and you can make a
paper stick-on badge at the door. You’ll still get a ticket.
The badge prize will be something small, approximately $5.00 in
value. In this way we will spend the same amount per year as the Egg
Drawing, but we’ll have 12 winners rather than one or two.
We hope you like it! Don’t forget to wear your badge! 􀂊
There’s a New Game In Town
The Egg Drawing Is Cracked
Have you ever thought about the Egg Drawing? Month after
month we draw an egg with someone’s name who is not present to
win, or someone who seemingly is unknown to anyone in the club, or
even an SK. Then someone lugs home the eggs and their crate,
usually grumbling about carrying this load.
Starting at the April General Meeting we’ll try something NEW.
Wear your name badge, and you’ll receive one ticket for a prize
drawing to be given that night. Not from the ARALB? Wear your
name badge from any club. Forget your badge, and you can make a
paper stick-on badge at the door. You’ll still get a ticket.
The badge prize will be something small, approximately $5.00 in
value. In this way we will spend the same amount per year as the Egg
Drawing, but we’ll have 12 winners rather than one or two.
We hope you like it! Don’t forget to wear your badge!
April ARALB Meeting
Alternate Location!
Friday, April 6
7:00 PM
at
The American Red Cross
3150 E. 29th Street
Long Beach
Dave Bell, W6AQ
My Life in
The World’s Greatest Hobby
Dave has been active in ham radio for
more than 50 years. He directed the film
Ham Radio Today that plays on the Queen
Mary. He is the first recipient of the ARRL
Lifetime Achievement Award.

Board of Directors ARALB

ARALB
Board of Directors
Dennis Kidder, W6DQ
President
WA6NIA@arrl.net
562-858-2883
Michael Fox, W6MJF
Vice President
W6MJF@arrl.net
562-427-0074
Ken Lister, KG6TOC
Secretary
KG6TOC@arrl.net
562-426-9544
Carina Lister, KF6ZYY
Treasurer
KF6ZYY@arrl.net
562-570-5752
George Apt, KF6THT
Past President
cgapt@aol.com
562-997-8985
Marilyn Boone, KF6GZF
Director
KF6GZF@aol.com
562-425-6098
Kim De Celles, K9KIM
Director
kimbolion@aol.com
562-434-3635
Glenn Draper, AE6YT
Director
AE6YT@arrl.net
562-531-3734
Tom Gibbons, W9EYB
Director
tlgnov6@yahoo.com
562-529-8644
John Klanchnik, KG6POB
Director
j.klanchnik1@verizon.net
562-572-4880
Jeff Potter, KG6DKJ
Director
KG6DKJ@aol.com
562-423-9352

Morse codes

MORSE CODE PATTERNS
Character Pattern Character Pattern

A di-DAH                           N DAH-dit
B DAH-di-di-dit                O DAH-DAH-DAH
C DAH-di-DAH-dit           P di-DAH-DAH-dit
D DAH-di-dit                     Q DAH-DAH-di-DAH
E dit                                    R  di-DAH-dit
F di-di-DAH-dit                  S di-di-dit
G DAH-DAH-dit               T DAH
H di-di-di-dit                      U di-di-DAH
I di- dit                                V di-di-di-DAH
J di-DAH-DAH-DAH         W di-DAH-DAH
K DAH-di-DAH                  X DAH-di-di-DAH
L di-DAH-di-dit                  Y DAH-di-DAH-DAH
M DAH-DAH                      Z DAH-DAH-di-dit
 


Number Pattern Punctuation Pattern

1 di-DAH-DAH-DAH-DAH Dash (pause) DAH-di-di-di-DAH
2 di-di-DAH-DAH-DAH Period ( . ) di-DAH-di-DAH-di-DAH
3 di-di-di-DAH-DAH Comma ( , ) DAH-DAH-di-di-DAH-DAH
4 di-di-di-di-DAH Question ( ? ) di-di-DAH-DAH-di-dit
5 di-di-di-di-dit Slant ( / ) DAH-di-di-DAH-dit
6 DAH-di-di-di-dit
7 DAH-DAH-di-di-dit
8 DAH-DAH-DAH-di-dit
9 DAH-DAH-DAH-DAH-dit
0 DAH-DAH-DAH-DAH-DAH
Special Pattern
Error di-di-di-di-di-di-di-dit
Error (alternate) di-dit dit-dit
Break (BK) DAH-di-di-di-DAH-di-DAH
End-of-Message (AR) di-DAH-di-DAH-dit
End-of-QSO (SK) di-di-di-DAH-di-DAH
Please Wait (AS) di-DAH-di-di-dit
Specific Station Only
- Go Ahead -
DAH-di-DAH-DAH-dit
Morse Code Sound Patterns 
Note: By concensus of many morse instructors in over a century of teaching morse code,
it is generally considered counter-productive to learn the morse alphabet visually (i.e., as
dashes and dots). What came about, then, to emphasize the need to learn morse aurally
(just as it would be used on-the-air), are the word sounds "di" (or "dit", a short staccato
sound) and "DAH" (a heavier, longer sound). Even these are approximations, but one
needs to start someplace.
Timing: In real practice, using tonal sounds (as one would encounter on-the-air), the
"DAH" is ideally three times the duration of the "dit". The spacing between dits and
DAHS (within a single character) is equal in duration to a silent "dit". The spacing
between characters is equal to the duration of a silent "DAH". And the standard spacing
between words is equal to the duration of a silent character "A" (i.e., dit-DAH).
Speed: In words-per-minute (wpm), speed is taken to mean the number of times the word
"PARIS", using standard timing as explained above, will exactly fit into one minute. I
recommend one have the ability to copy (and send) with 90% accuracy at 10 wpm before
attempting to communicate "on-the-air".
Sending: It is a common misconception that if one learns to RECEIVE morse code,
sending skills will come automatically. This misconception can lead to a disastrous first
experience on-the-air. Sending involves mechanical skills, the timing for which can only
be learned by actual practice. The classic choice for practicing sending is a hand key and
code practice oscillator. There are other choices available (keyers with dual and singlelever
paddles, mechanical "bugs", and keyboards or computers). The choice is yours, but
I highly recommend resisting the temptation to use keyboards/PC's, unless you have a
physical disability that necessitates it, because you'll be missing out on half of the CW
experience.
LEARN MORSE CODE in one minute!
This is a code listening tool. Print it on your printer.
Place your pencil where it says START and listen to Morse code.
Move down and to the right every time you hear a DIT (a dot).
Move down and to the left every time you hear a DAH (a dash).
Here's an example: You hear DAH DIT DIT which is a dash then dot then dot.
You start at START and hear a DAH then move down and left to the T and then you hear a DIT so you move down and RIGHT to the
N and then you hear another DIT so you move DOWN and RIGHT again and land on the D
You then write down the letter D on your code copy paper and jump back to START waiting for your next letter.
The key to learning the code is hearing it and comprehending it while you hear it.
The only way to get there is to practice 10 minutes a day.
Listen to code tapes or computer practice code while tracing out this chart and you will find yourself writing down the letters in no
time at all without the aid of the chart.
The chart brings repetition together with recognition, which you don't get from any other type of code practice aid.
HEAR slow Morse code
This code speed is slow enough to follow the chart above. ----------------------
HEAR Morse

ham diayagram

 ELECTRONIC KEYER
Despite my most dedicated efforts, some of you still have not built any of my projects. Among the excuses are “The
parts are too expensive” or “I hate mail order”. Some amateurs have complained that the parts are too small to read
despite the availability of magnifying glasses at almost any drug store. Still others claim they don’t have a soldering iron
which is surprising when one considers all the soldering irons given away at RASON meetings. In any event, the circuit
in figure 1 is designed to make it very difficult for you not to build something soon.
This month’s circuit is an electronic keyer which uses only two inexpensive IC’s which are available at any Radio Shack
store. Some of you gasped at the $20 cost of a Curtis chip and the “Ugh!” concept of mail order in an earlier construction
article. This circuit lacks the bells and whistles of the Curtis chip but is capable of producing perfectly sounding CW. For
as little as $6 (maybe even less) and some junk box parts, you could build a keyer which will serve you well for many
years.
The circuit in figure 1 uses a quad Nor gate chip and a dual D flip flop chip. To my knowledge, no one (not even
Ramsey) has been able to perform this miracle with only two IC’s before. Two of the Nor gates are used as the clock
generator and the frequency is determined by C1, R1 and R2 which sets the keying speed. This clock signal is fed into
Pin 3 of IC 2 which is the dot flip flop. Nothing happens at this point until the dot paddle is grounded. When the dot
paddle is depressed, Pin 1 of the flip flop changes states for as long as the dot paddle is depressed. When the dash
paddle is grounded, this in turn causes the dot paddle to be grounded also through Diode D1. This starts the dash cycle
which continues until Pin 13 of IC-2 changes state again. Diode D2 keeps the dot paddle low until the dash cycle
finishes. Pins 1 and 13 of each flip flop form the output to transistor Q1. Because Pin 1 is not always high during the
dash cycle, Diodes D3 and D4 form an Or gate to keep Q1 saturated during a dash cycle.
This circuit has one anomaly which operators should be aware of. The dash paddle always has priority and attempts to
squeeze the paddle (both dot and dash depressed) results in a continuous stream of dashes. This means the operator
must release the dash paddle before depressing the dot paddle. Experienced CW operators will have no problem with
this circuit but sloppy high speed operators will need to refine their sending since it is not as forgiving as a Curtis chip.
This circuit uses CMOS chips which require special handling to prevent static charges. Sockets are highly
recommended. The circuit requires very low power and can be powered from 8 to 15 volts. A 9 volt battery should last
over a year meaning an on/off switch isn’t needed. No weight control is provided because experience has shown that it is
often misused by operators causing code which is difficult to copy.
DE N1HFX

Thursday, June 3, 2010

NAVY ELECTRICITY AND ELECTRONICS TRAINING
SERIES
The Navy Electricity and Electronics Training Series (NEETS) was developed for use by personnel in
many electrical- and electronic-related Navy ratings. Written by, and with the advice of, senior
technicians in these ratings, this series provides beginners with fundamental electrical and electronic
concepts through self-study. The presentation of this series is not oriented to any specific rating structure,
but is divided into modules containing related information organized into traditional paths of instruction.
The series is designed to give small amounts of information that can be easily digested before advancing
further into the more complex material. For a student just becoming acquainted with electricity or
electronics, it is highly recommended that the modules be studied in their suggested sequence. While
there is a listing of NEETS by module title, the following brief descriptions give a quick overview of how
the individual modules flow together.
Module 1, Introduction to Matter, Energy, and Direct Current, introduces the course with a short history
of electricity and electronics and proceeds into the characteristics of matter, energy, and direct current
(dc). It also describes some of the general safety precautions and first-aid procedures that should be
common knowledge for a person working in the field of electricity. Related safety hints are located
throughout the rest of the series, as well.
Module 2, Introduction to Alternating Current and Transformers, is an introduction to alternating current
(ac) and transformers, including basic ac theory and fundamentals of electromagnetism, inductance,
capacitance, impedance, and transformers.
Module 3, Introduction to Circuit Protection, Control, and Measurement, encompasses circuit breakers,
fuses, and current limiters used in circuit protection, as well as the theory and use of meters as electrical
measuring devices.
Module 4, Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading, presents
conductor usage, insulation used as wire covering, splicing, termination of wiring, soldering, and reading
electrical wiring diagrams.
Module 5, Introduction to Generators and Motors, is an introduction to generators and motors, and
covers the uses of ac and dc generators and motors in the conversion of electrical and mechanical
energies.
Module 6, Introduction to Electronic Emission, Tubes, and Power Supplies, ties the first five modules
together in an introduction to vacuum tubes and vacuum-tube power supplies.
Module 7, Introduction to Solid-State Devices and Power Supplies, is similar to module 6, but it is in
reference to solid-state devices.
Module 8, Introduction to Amplifiers, covers amplifiers.
Module 9, Introduction to Wave-Generation and Wave-Shaping Circuits, discusses wave generation and
wave-shaping circuits.
Module 10, Introduction to Wave Propagation, Transmission Lines, and Antennas, presents the
characteristics of wave propagation, transmission lines, and antennas.
vi
Module 11, Microwave Principles, explains microwave oscillators, amplifiers, and waveguides.
Module 12, Modulation Principles, discusses the principles of modulation.
Module 13, Introduction to Number Systems and Logic Circuits, presents the fundamental concepts of
number systems, Boolean algebra, and logic circuits, all of which pertain to digital computers.
Module 14, Introduction to Microelectronics, covers microelectronics technology and miniature and
microminiature circuit repair.
Module 15, Principles of Synchros, Servos, and Gyros, provides the basic principles, operations,
functions, and applications of synchro, servo, and gyro mechanisms.
Module 16, Introduction to Test Equipment, is an introduction to some of the more commonly used test
equipments and their applications.
Module 17, Radio-Frequency Communications Principles, presents the fundamentals of a radiofrequency
communications system.
Module 18, Radar Principles, covers the fundamentals of a radar system.
Module 19, The Technician's Handbook, is a handy reference of commonly used general information,
such as electrical and electronic formulas, color coding, and naval supply system data.
Module 20, Master Glossary, is the glossary of terms for the series.
Module 21, Test Methods and Practices, describes basic test methods and practices.
Module 22, Introduction to Digital Computers, is an introduction to digital computers.
Module 23, Magnetic Recording, is an introduction to the use and maintenance of magnetic recorders and
the concepts of recording on magnetic tape and disks.
Module 24, Introduction to Fiber Optics, is an introduction to fiber optics.
Embedded questions are inserted throughout each module, except for modules 19 and 20, which are
reference books. If you have any difficulty in answering any of the questions, restudy the applicable
section.
Although an attempt has been made to use simple language, various technical words and phrases have
necessarily been included. Specific terms are defined in Module 20, Master Glossary.
Considerable emphasis has been placed on illustrations to provide a maximum amount of information. In
some instances, a knowledge of basic algebra may be required.
Assignments are provided for each module, with the exceptions of Module 19, The Technician's
Handbook; and Module 20, Master Glossary. Course descriptions and ordering information are in
NAVEDTRA 12061, Catalog of Nonresident Training Courses.
Montaj talimatları
Bu adım tamamlandıktan olarak o her kutuyu işaretleyin.
o Adım 1: takın pirinç çubuk. yeri için parçalar yerleştirme diyagramı (Şekil E) kontrol edin.
Temizlik zımpara veya çelik yünü ile pirinç çubuk. 90 derece biraz az çubuğun Bend bir ucunu. Lay devre
folyo yüzü masaya tahta. sap yakın büyük bir delik üzerinde (Şekil D bakınız) pirinç çubuğun bağladım sonuna yerleştirin.
çubuk alan kolun üzerinden dışarı uzanır emin olun. Lehim folyo tarafında kuruluna çubuk. pirinç çubuğun sonunda
sap üzerinde belirgin oval geçmiş uzatmak gerekir. Bu iletişim noktasıdır. o Eğer bu noktadan ötesine, çubuk kesme
oval sonuna off hemen önce.
o Adım 2: lehimleyin kuruluna IC yuva.
IC için soket bileşeni (non-folyo) yönetim kurulu tarafında ilk yerleştirilir. sokete şimdi IC takmayın.
tüm diğer kısımlar soket (Adım 13) içine IC fişi talimatı olacak kartına lehimlenmiş sonra. Belirlemek
Soketin taraklı sonu. Eklemek devre içine yuva. ters çevirin yönetim kurulu ve nazikçe soket üzerindeki pinler yayıldı
böylece kurulu folyo tarafı ile irtibat kurunuz. Lehim yerine soket.
o Adım 3: C1 (0.01-mF kondansatör) kurulu bileşeni tarafında yerleştirin.
Konu tel C1 üzerine gemide deliklerden yol açar. (Bakınız Şekil F.) lehimlemek ve folyo yüzüne teller
kurulu. Cut lehim ortak yukarıda ekstra tel kapatın.
o Adım 4: (10-kilohm direnç) kurulu bileşeni tarafında R2 yerleştirin.
yaklaşık 90 ° açıyla direnç her kurşun (tel) bükülerek montaj için hazırlayın dirençler. () Resim G. bak
board deliklere yerleştirin yol ve üzeri direnç tutmak yerine onları katlayın. Lehim folyo yol açar ve onları trim
yakın folyo için.
o Adım 5: C3 (220-mF, 35 volt Yeri
kondansatör) üzerinde elektrolitik
tahtanın bileşeni tarafı.
Bu kondansatör bir (+) tarafı artı var
ve negatif (-) tarafı. (-) Tarafı
tahta uzak bakan yer
kolu. (Bildirimi + işareti basılı
Bu konumu devre kartı üzerinde yer.)
Eklemek kondansatör doğru yöneltir
devre delik, onları lehim
yeri ve ilave tel keserek.
o Adım 6: C2 (0.01-mF kondansatör) Yeri
bileşeni tarafında
kurulu.
Konu tel C2 yol açar
devre kartı üzerindeki deliklerden.
(F.) lehimleyin Adım 3 ve Şekil bak
karta teller. Cut ekstra
lehim ortak yukarıda tel kapatın.
Şekil C-şematik diyagramı
Kod uygulama osilatör
Monteringsvejledning
o Kontrollér hver kasse som skridt er afsluttet.
o Trin 1: Tilslut messing stang. Kontroller dele-placering diagram (figur E) for placering.
Rengør messing stang med sandpapir eller ståluld. Bøj den ene ende af stangen lidt mindre end 90 grader. Sælg kredsløbet
bord på bordet med folie opad. Placer hooked udgangen af messing stang over det store hul i nærheden af håndtaget (se figur D).
Sørg for, at stangen strækker ud over håndtaget området. Lodde stangen til bestyrelsen på folien side. Den ende af messing stang
bør ikke udvides forbi markeret oval på håndtaget. Dette er din kontaktpunkt. Hvis det går frem over dette punkt, skæres stangen
off lige før udløbet af den ovale.
o Trin 2: Solder IC soklen til bestyrelsen.
Stikket til IC er placeret på den del (non-folie) side af brættet først. Sæt ikke IC i stikket nu.
Efter alle de andre dele er loddet til bestyrelsen vil du blive instrueret om at slutte IC i stikkontakten (trin 13). Identificer
notched udgangen af soklen. Sæt stikket i kredsløb. Vend brættet over og fordeles forsigtigt benene på stikket
så de komme i kontakt med folie side af brættet. Lodde stikket på plads.
o Trin 3: Sæt C1 (0,01-mF kondensator) på komponenten side af brættet.
Tråd tråden fører på C1 gennem hullerne på brættet. (Se figur F.) lodde ledninger på folien side af
bord. Skær ekstra ledning ud over loddemetal fælles.
o Trin 4: Placer R2 (10-kilohm modstand) på komponenten side af brættet.
Forbered modstande til montering ved at bøje hver bly (wire) af den modstand der ca en 90 ° vinkel. (Se figur G.)
Sæt fører ind i bestyrelsen huller og bøje dem over til at holde modstand på plads. Lodde ledningerne til folie og trimme dem
tæt på folie.
o Trin 5: Sæt C3 (220-mF, 35-volt
elektrolytiske kondensator) på
komponent side af brættet.
Denne kondensator har et plus (+) side
og en negativ (-) side. Den (-) side er
placeret på bordet vender væk fra
håndtaget. (Bemærk + tegnet trykte
på kredsløb på dette sted.)
Sæt kondensator fører til
printpladen huller, loddemetal dem i
sted og trim off den ekstra ledning.
o Trin 6: Sæt C2 (0,01-mF kondensator)
på komponenten side af
bord.
Tråd tråden fører fra C2
gennem hullerne på printpladen.
(Se trin 3 og figur F.) lodde
ledninger på bordet. Klip den ekstra
wire ud over loddemetal fælles.
Figur C-Skematisk diagram af
en kode-praksis oscillator.
Montageanleitung
o Überprüfen Sie jedes Feld als diesen Schritt abgeschlossen ist.
o Schritt 1: Bringen Sie die Messingstange.
Prüfen Sie die Teile-Placement-Diagramm (Abb. E) für den Standort.
Reinigen Sie die Messingstange mit Schleifpapier oder Stahlwolle. Bend einem Ende des Stabes etwas weniger als 90 Grad. Legen Sie die Schaltung
Brett auf den Tisch, mit einer Folie nach oben. Legen Sie das gebogene Ende des Messingstange über das große Loch in der Nähe des Griffes (siehe Abbildung D).
Vergewissern Sie sich, den Stab erstreckt sich über den Griffbereich.
Solder den Stab in den Vorstand auf der Folie Seite. Das Ende der Messingstange
sollte nicht nach den markierten Oval auf den Griff zu verlängern. Das ist Ihre Anlaufstelle. Wenn es über diesen Punkt hinaus zu verlängern, schneiden Sie den Stab
off kurz vor dem Ende des Ovals.
o Schritt 2: Löten Sie die IC-Sockel auf dem Board.
Die Buchse für das IC ist auf dem Bauteil (non-Folie) Seite der Platine den ersten Platz. Stecken Sie das IC in den Sockel jetzt.
Nachdem alle anderen Teile sind an den Vorstand beauftragt, die Sie IC in den Sockel (Schritt 13) Stecker werden verlötet. Identifizieren Sie die
eingekerbte Ende der Steckdose. Stecken Sie die Buchse in die Leiterplatte. Schalten Sie das Brett über und sanft verteilen die Pins auf dem Sockel
so machen sie Kontakt mit der Folie Seite des Brettes. Solder der Steckdose vorhanden.
o Schritt 3: Legen C1 (0,01 mF-Kondensator) auf der Bestückungsseite der Platine.
Führen Sie die Anschlussdrähte auf C1 durch die Löcher auf der Platine. (Siehe Abbildung F.) der Drähte auf die Seite der Folie
Bord. Schneiden Sie den Draht extra off oberhalb der Lötstelle.
o Schritt 4: Legen R2 (10-kilohm Widerstand) auf der Bestückungsseite der Platine.
Bereiten Widerstände für die Montage durch Biegen jedes Kabel (wire) des Widerstandes auf ca. 90 ° Winkel. (Siehe Abbildung G.)
Stecken Sie die Leitungen in das Brett Löcher und biegen sie an den Widerstand in Position zu halten. Solder die Leitungen an der Folie und schneiden Sie sie
nah an der Folie.
o Schritt 5: Legen C3 (220 mF, 35-Volt-
Elko) auf der
Bestückungsseite der Platine.
Dieser Kondensator verfügt über ein Pluszeichen (+) Seite
und eine negative Seite (-). Die Seite (-) ist
platziert auf dem Spielfeld abgewandten
den Griff. (Beachten Sie das +-Zeichen gedruckt
auf der Platine an dieser Stelle.)
Stecken Sie den Kondensator führt in die
Platine Löcher, löten sie in
Ort und schneiden Sie die zusätzlichen Draht.
o Schritt 6: Legen C2 (0,01 mF-Kondensator)
auf der Bestückungsseite der
Bord.
Führen Sie den Draht führt von C2
Durch die Löcher auf der Platine.
(Siehe Schritt 3 und Abbildung F.) anlöten
Drähte auf die Platine. Schneiden Sie die extra
Draht-off oberhalb der Lötstelle.
Abbildung C-Schematische Darstellung des
ein Code-practice-Oszillator.

Wednesday, June 2, 2010

udhëzimet e Kuvendit
o Kontrolloni çdo kuti, si se hap është i përfunduar.
O Hapi 1: Bashkangjisni shufra bronzi. Shiko diagramin pjesë-vendosje (Figura E) për vendndodhjen.
Pastroni shufra bronzi me letër zmerile ose leshi çeliku. Bend një fund të shkopin e pak më pak se 90 gradë. Shtroj qark
bordit në tavolinë me anën e fletë metalike lart. Vendi fund tëri i shkop bronzi në lidhje me vrima të mëdha në afërsi të trajtojë (shih tabelën D).
Sigurohuni që shufra shtrihet në periudhën e trajtuar zonën. Saldoj shkop të bordit në anën fletë metalike. Fundi i shufra bronzi
nuk duhet të shtrihet përtej vezake të shënuara në dorezë. Kjo është pika e kontaktit tuaj. Në qoftë se nuk shtrihet përtej këtë pikë, të prerë shufra
jashtë vetëm para përfundimit të ovale.
O Hapi 2: saldoj socket IC të bordit.
Socket për BN është vendosur në komponentë (jo-petë) ana e bordit të parë. Mos plug IC në prizën tani.
Pas të gjitha pjesët e tjera janë të ngjitur në bord do të udhëzohet që të plug IC në prizë (Hapi 13). Identifikimi
fund notched e fole. Fut socket në tabelen e rrjetit. bordit të kthehem dhe butësisht përhapjen e këmbët në prizë
mënyrë që ata të bëjnë kontakt me anën petë të bordit. Saldoj socket në vend.
O Hapi 3: Vendi C1 (kondensator ,01-MF), në anën komponent i bordit.
Thread tela çon në C1 nëpër vrima në bord. (Shih Figurën F.) saldoj telave mbi anën petë të
bordit. Pritini tela ekstra jashtë mbi lidhës të përbashkët.
O Hapi 4: Vendi R2 (rezistencë 10-kilohm) në anën e komponentit të bordit.
resistors Përgatitja për rritje nga bending çdo të çojë (tela) e rezistencë në një kënd rreth 90 °. (Shih Figurën G.)
Fut çon në vrimat e bordit dhe përkulem e tyre mbi të mbajë rezistencë në vend. Saldoj çon në petë dhe gjendje e mirë e tyre
të afërta me fletë metalike.
O Hapi 5: Vendi C3 (220-MF, 35-volt
elektrolitike kondensator) në
anë komponent i bordit.
Ky kondensator ka një plus (+) pala
dhe një negativ (-) pala. (-) Pala është
të vendosur në bord përballet larg
trajtuar. (Vini re shenja + shtypura
në tabelen e rrjetit në këtë vend.)
Fut kondensator çon në
vrima tabelen e rrjetit, lidhës tyre në
vend dhe shkurtojë off tela ekstra.
O Hapi 6: Vendi C2 (kondensator ,01-MF)
në anën e komponentit të
bordit.
Thread tela çon nga C2
nëpër vrima në bord qark.
(Shih Hapi 3 dhe Figura F.) saldoj
telave mbi bordit. Pritini shtesë
teli off mbi lidhës të përbashkët.
Figura C-skematike diagram
një oshilator-kod praktikë.

विधानसभा निर्देश
ओ प्रत्येक बॉक्स को चेक के रूप में यह है कि कदम पूरा हो गया है.
ओ चरण 1: संलग्न पीतल रॉड. स्थान के लिए भागों-प्लेसमेंट आरेख (चित्रा ई) की जाँच करें.
sandpaper या इस्पात ऊन के साथ पीतल छड़ी साफ करो. थोड़ा मोड़ 90 डिग्री से कम एक छड़ी के अंत. सर्किट लेटाओ
पन्नी पक्ष के साथ मेज पर बोर्ड. संभाल के पास बड़े छेद पर पीतल छड़ी के अंत झुका प्लेस (चित्रा डी देखें).
यकीन है कि छड़ी क्षेत्र को संभालने पर बाहर फैली हुई है बनाओ. पन्नी तरफ बोर्ड करने के लिए छड़ी टांका लगाना. पीतल छड़ी के अंत
संभाल पर चिह्नित अंडाकार अतीत का विस्तार नहीं करना चाहिए. यह आपकी संपर्क बिंदु है. यदि यह नहीं इस बिंदु से आगे बढ़ाने, रॉड कटौती
अभी दूर अंडाकार के अंत से पहले.
ओ चरण 2: आईसी बोर्ड करने के लिए गर्तिका टांका लगाना.
आईसी के लिए गर्तिका (घटक गैर पन्नी) बोर्ड के पक्ष में पहले से रखा गया है. सॉकेट में प्लग आईसी अब मत करो.
के बाद सभी अन्य भागों बोर्ड आप गर्तिका (13 चरण) में आईसी प्लग निर्देश जाएगा soldered हैं. पहचानें
गर्तिका की नोकदार अंत. सर्किट बोर्ड में गर्तिका डालें. बारी बोर्ड और धीरे गर्तिका पर पिन का प्रसार
तो वे बोर्ड की पन्नी पक्ष के साथ संपर्क बनाने. जगह में गर्तिका टांका लगाना.
ओ चरण 3: C1 बोर्ड के घटक ओर (0.01-MF संधारित्र) रखें.
धागा तार बोर्ड पर छेद के माध्यम से C1 पर ले जाता है. (देखें चित्र एफ) मिलाप की पन्नी पक्ष पर तारों
बोर्ड. कटौती संयुक्त मिलाप ऊपर अतिरिक्त बंद तार.
ओ चरण 4: R2 प्लेस (10 kilohm अवरोध) बोर्ड के घटक पक्ष पर.
लगभग एक 90 ° कोण करने के लिए प्रत्येक (अवरोध का नेतृत्व तार) झुकने से बढ़ते के लिए तैयार resistors. (चित्रा जी देखें)
सम्मिलित बोर्ड छेद में ले जाता है और जगह में अवरोध पर उन्हें पकड़ मोड़. मिलाप पन्नी करने के लिए ले जाता है और उन्हें ट्रिम
पन्नी बंद करने के लिए.
ओ चरण 5: C3 प्लेस (220 एमएफ, 35 वोल्ट
संधारित्र electrolytic पर)
बोर्ड के घटक तरफ.
इस संधारित्र एक प्लस (+) पक्ष है
और एक नकारात्मक (-) की ओर. (-) की ओर है
दूर का सामना करना पड़ से बोर्ड पर रखा गया
संभाल. नोटिस (+ हस्ताक्षर मुद्रित
सर्किट बोर्ड पर इस स्थान पर.)
सम्मिलित संधारित्र में सुराग
सर्किट बोर्ड छेद, उन में मिलाप
जगह और बंद अतिरिक्त तार ट्रिम कर दीजिए.
ओ चरण 6: C2 प्लेस (0.01-MF संधारित्र)
घटक के पक्ष में
बोर्ड.
धागा तार C2 से सुराग
सर्किट बोर्ड पर छेद के माध्यम से.
(3 और चित्रा कदम देखने एफ) सम्मिलित
बोर्ड पर तारों. अतिरिक्त कटौती
संयुक्त मिलाप ऊपर से तार.
चित्रा सी के योजनाबद्ध आरेख
एक कोड अभ्यास थरथरानवाला.
組立説明
そのステップが完了するとオ各ボックスをチェックします。
オステップ1:接続真鍮棒。場所の部品、配置図(図E)を確認します。
清潔度サンドペーパーやスチールウールと真鍮棒。 90度をわずかに下回るロッドのベンドの一端。レイ回路
箔側とテーブルの上にボードを開く。ハンドルの近くに大きな穴の上(図D参照)真鍮棒のフック端を配置します。
ロッドの領域をハンドルの上を拡張してください。はんだ箔側の基板にロッド。真鍮棒の端
ハンドルマーク楕円形、過去を拡張しないでください。これは、ご連絡先のポイントです。それがない場合は、このポイントを超えて拡張すると、ロッドをカット
楕円の終わりを直前に。
オステップ2:はんだ基板にICソケット。
ICのソケットは、コンポーネント(非箔)ボード側の最初に配置されます。ソケットにすぐにICを接続しないでください。
他のすべての部分は、ソケット(ステップ13)にICを接続するように指示される基板に半田付けされた後。識別
ソケットの切り欠き端。挿入回路基板にソケット。裏返しボードと優しくソケットのピンを広げる
ので、基板の箔側との接触を確認します。はんだの場所にソケット。
オステップは、3C1は(0.01 mFのコンデンサ)ボードのコンポーネント側に配置します。
スレッドは、ワイヤは、C1に基板上に穴を通してつながる。 (図F.)のはんだ箔側にワイヤ
ボードです。カットはんだ接合部の上に余分な線を切ります。
オステップは、4:(10 kilohm抵抗)ボードのコンポーネント側にR2を配置します。
90 °の角度に抵抗の各リード線(ワイヤ)曲げでの実装を準備抵抗。 ()図Gを参照してください
ボードの穴に挿入し、リードは、以上の抵抗を保持する代わりに、それらを曲げる。はんだは、箔につながるし、それらをトリミング
近く箔に。
オステップは5C3は(220 - MFを、35ボルトのイス
コンデンサ)の電解
ボードの部品面。
このコンデンサは(+)側に加えている
とマイナス( - )側。 - )側は、
ボードから離れ直面して上に配置
ハンドル。 (注意+記号を印刷
この場所の回路基板上で)。
を挿入コンデンサはにつながる
回路基板の穴は、それらをはんだ付け
場所や余分な線を切り落とす。
オステップは6C2は(0.01 mFのコンデンサ)プレイス
のコンポーネント側に
ボードです。
スレッドは、ワイヤは、C2からリード
回路基板上のスルーホール。
F.)のはんだをステップ3と図を見る
ボード上の配線。カット追加
はんだ接合部の上に線を切ります。
C -模式図の
コードの練習発振器。
المذبذب
ليس من الصعب لبناء مذبذب رمز الممارسات. ومذبذب الكامل الذي يتصاعد على قطعة صغيرة من الخشب
هو موضح في الشكل ألف ويبين الشكل باء جميع قطع الغيار اللازمة لهذا المشروع وضعت جاهزة للتركيب. لوحات الدوائر الالكترونية لهذا المشروع
ويمكن طلب من الجيش الملكي الدوائر ، 18 ن 640 حقل المحكمة ، دندي ، ايل 60118-9269. وهناك عدة أجزاء كاملة ، بما في ذلك الدوائر
مجلس ، وهو متاح من البحيرات [هووسر نادي راديو الهواة ، ص 981 ، وارسو ، في 46581-0981
الاتصال هؤلاء البائعين للحصول على أحدث الأسعار.
يرجى قراءة كافة التعليمات بعناية قبل تركيب أي أجزاء. التحقق من الرسم التخطيطي أجزاء - التنسيب لموقع
كل جزء.
س الاختيار كل مربع كما أنه تم تثبيت جزء ملحوم.
راديو الكوخ مكون المستخدمة في
كمية وصف عدد الخطوة رقم الجزء رقم
المكثفات
س 1 0.01 - C1 وسط 272-131 3
س 1 0.01 - C2 وسط 272-131 6
س 1 وسط 220 ، 35 - كهربائيا الخامس 272-1029 C3 5
المقاومات
س 1 10 kilohm ، 04/01 دبليو (أسود اللون البني ، البرتقالي المشارب) 272-1335 R2 4
س 1 47 kilohm ، 04/01 دبليو (الأصفر والبنفسجي والبرتقالي المشارب) 272-1342 R3 8
س 1 10 kilohm ، 04/01 دبليو (أسود اللون البني ، البرتقالي المشارب) 272-1335 R1 9
س 1 47 أوم ، 1 / 4 واط (شرائط صفراء اللون البنفسجي الأسود) 271-009 11 R5
متفرقات
س 1 الجهد 100 kilohm 271-284 R4 7
س 1 مأخذ جيم 8 دبوس 276-1995 2
س جيم الموقت 1 7555 المكمل (أو 555 جيم الموقت) 276-1718 U1 13
س 1 مكبر الصوت -- 2 بوصة ، 8 أوم 40-245 LS1 11
س 1 من ستة إلى 10 بوصة من الأسلاك المعزولة ، على بعد حوالى 18 11
أو قياس 22
س 1 موصل بطارية 9 الخامس 270-325 10
س 1 9 الخامس بطارية 23-553 BT1 10
س 1 حائز على شكل بطارية يو 270-326 12
قضبان النحاس الأصفر س 1 و 2 بوصة طويلة ، ما يقرب من
قياس 18 (حوالي القطر من معطف شماعات).
متوفرة في المحلات التجارية هواية.
س 4 الفواصل 1/4-inch 64-3024 12
س 1 2 '4' قطعة من الخشب ل1/2-inch قاعدة 12
س 5 رقم 6 براغي الخشب ، 3/4-inch طويلة 12
س 2 رقم 6 براغي الخشب ، 3/8-inch طويلة 12
कोडांतरण एक कोड अभ्यास थरथरानवाला
यह मुश्किल के लिए एक कोड व्यवहार थरथरानवाला का निर्माण नहीं है. एक पूरी थरथरानवाला है कि लकड़ी के एक छोटे से टुकड़े पर माउंट करता है
चित्रा ए चित्रा बी इस बाहर रखी विधानसभा के लिए तैयार परियोजना के लिए सभी भागों शो में दिखाया गया है. इस परियोजना के लिए सर्किट बोर्ड
दूर से आदेश दिया जा सकता सर्किट, 18 एन 640 फील्ड कोर्ट, डंडी, 60118-9269 आईएल. एक पूरी भागों सर्किट सहित किट,
बोर्ड, Hoosier झील एमेच्योर रेडियो क्लब, PO Box 981, वारसॉ, 46581-0981 में उपलब्ध है
संपर्क नवीनतम मूल्य निर्धारण के लिए इन विक्रेताओं.
कृपया किसी भी हिस्से माउंट करने से पहले ध्यान से सभी निर्देश पढ़ें. के स्थान के लिए भागों-प्लेसमेंट आरेख देखें
प्रत्येक भाग.
ओ प्रत्येक बॉक्स को चेक के रूप में उस भाग स्थापित है और soldered.
रेडियो झोंपड़ी में प्रयुक्त घटक
मात्रा विवरण भाग संख्या संख्या चरण संख्या
Capacitors
1 0.01-MF ओ 272-131 C1 3
1 0.01-MF ओ 272-131 C2 6
220 1-MF ओ, 35-V electrolytic 272-1029 5 C3
Resistors
1 10 kilohm, 1 / डब्ल्यू 4 (भूरे काले, नारंगी धारियों) 272-1335 R2 4 ओ
1 47 kilohm, 1 / डब्ल्यू 4 (पीले बैंगनी, नारंगी धारियों) 272-1342 8 R3 ओ
1 10 kilohm, 1 / डब्ल्यू 4 (भूरे काले, नारंगी धारियों) 272-1335 R1 9 या
1 47 ओम, 1 / डब्ल्यू 4 (पीला बनफ़शा काले धारियों) 271-009 R5 11 ओ
विविध
1 100 kilohm तनाव नापने का यंत्र ओ 271-284 R4 7
1 8 पिन आईसी गर्तिका ओ 2 276-1995
ओ 1 7555 CMOS टाइमर (आईसी या 555 मज़दूर आईसी) 276-1718 U1 13
ओ 1 - लाउडस्पीकर 2 इंच, 8-LS1 11 ओम 40-245
ओ पृथक की तार, छह की 1 से 10 इंच के बारे में 18 11
या 22 गेज
1 से 9-V बैटरी संबंधक ओ 270-325 10
1 से 9-V बैटरी ओ 23-553 BT1 10
1 U-आकार बैटरी धारक ओ 270-326 12
ओ 1 ब्रास रॉड, 2 इंच लंबे समय लगभग,
एक कोट पिछलग्गू का व्यास के बारे में 18 (गेज).
शौक की दुकानों पर उपलब्ध है.
ओ 4 1/4-inch 64-3024 spacers 12
12 आधार के लिए 1 '2 4' की लकड़ी का टुकड़ा 1/2-inch ओ
ओ नहीं 5 6 लकड़ी शिकंजा, लंबे 3/4-inch 12
ओ 2 नं 6 लकड़ी शिकंजा, लंबे 3/8-inch 12
ओ 1 पांच घसिटना टाई बिंदु, माउंट करने के लिए स्पीकर (वैकल्पिक) 11 उपयोग किया 274-688

コード練習が発振器の組み立て
これは、コードの練習発振器を構築することは困難ではない。木材の小片にマウント完全発振器は、
A.Bは、このプロジェクトのアセンブリのための準備ができてレイアウトのすべての部品を示していますに示す。このプロジェクトの回路基板
遠いから、回路を命じたことができる18国連640フィールドコート、ダンディー、イリノイ州60118から9269。回路を含む完全な部品キット、
ボードは、使用可能なフーザークスアマチュア無線クラブ、私書箱981、ワルシャワ、46581から0981 INからです
最新の価格に関するお問い合わせ、これらのベンダー。
注意深く部品を取り付ける前に、すべての手順をお読みください。の場所の部品、配置図を確認
各部分。
オ各チェックボックスをオンとして、その部分がインストールされハンダ付け。
ラジオシャックコンポーネントで使用される
数量説明品番数ステップ数
コンデンサ
1 0.01 mF272から131 C13
1 0.01 mF272から131 C26
1 220 - mFの、35 - Vは、電解2721029 C35
抵抗
1 10 - kilohm1 /から4 W(ブラウンブラックオレンジストライプ)2721335 R24
1 47 - kilohm1 /から4 W(黄色紫オレンジストライプ)2721342 R38
1 10 - kilohm1 /から4 W(ブラウンブラックオレンジストライプ)2721335 R19
1 47 -Ω1 /から4 W(黄色紫、黒のストライプ)271009 R511
雑多
1 100 kilohmポテンショメータ271から284 R47
18ピンICソケット2761995 2
1 7555CMOSタイマICの(または555タイマIC)を276から1718 U113
1ラウドスピーカー - 2インチ、8オーム40から245各種アプリケーション11
絶縁電線、のo 1 610インチ約18 11
または22ゲージ
1 9 Vバッテリーのコネクタ270から325 10
1 9 Vバッテリー23から553 BT1 10
1 U字型電池ホルダー270から326 12
1真鍮の棒、2インチの長さは、約
ハンガーの直径約18ゲージ()。
趣味の店で利用可能。
4 1/4-inchスペーサ64から3024 12
基本12オ木材1 2'4'2インチ作品を
56木ネジ、長い4インチ12
26木ネジ、長い3/8-inch 12
1 5端子ネクタイをポイントし、(オプション)274688 11スピーカーをマウントするために使用